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Disturbance Dynamics in Transitional and Turbulent Flows

C.E. Grosch

Old Dominion University, Norfolk, Virginia 23529

ABSTRACT

In order to expand the predictive capability of single-point turbulence closure models to account

for the early-stage transition regime, a methodology for the formulation and calibration of model

equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is

presented. First the decay of laminar disturbances and turbulence in mean shear-free flows is

studied. In laminar flows, such disturbances are linear superpositions of modes governed by

the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport

equations for representative mean quantities. The link between a description based on a de-

terministic evolution equation and a probability based mean transport equation is established.

Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime,

a probability distribution must be defined even in the laminar case. Using this probability dis-

tribution, it is shown that the exponential decay of the linear modes in the laminar regime can

be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and

the dissipation rate. The evolution of these mean disturbance quantities is then described by

transport equations similar to those for the corresponding turbulent decaying flow. Second, tlo-

mogeneous shear flow, where disturbances can be described by rapid distortion theory (RDT),

is studied. The relationship between RDT and linear stability theory is exploited in order to

obtain a closed set of modeled equations. The linear disturbance equations are solved directly

so that the numerical simulation yields a database from which the closure coefficients in the

ensemble-averaged disturbance equations can be determined.



1 Introduction

Demands on the range of applicability of turbulence modeling are increasing, and with these

increasing demands has come the need to develop transition models within the context of the

traditional Reynolds-averaged turbulence modeling. Such transition models would encompass

the laminar/transitional regimes, along with the turbulent regime, describing averaged flow

properties such as the mean disturbance energy and dissipation rate. In order to develop a

transition/turbulence model for wall-bounded flows, which uses the strategy of employing an

intermittency function that interpolates between the laminar regime with its linear disturbances

and the fully turbulent regime with its stochastic fluctuations, a consistent mathematical de-

scription of the two regimes is necessary.

In all flow regimes, disturbances are defined here as deviations from the ensemble mean. The

laminar regime is defined a.s the region of the flow in which the ensemble mean velocity (zero in

the case of the homogeneous flows considered in this study) corresponds to a stationary solution

of the Navier-Stokes equation, and disturbances from this mean velocity are small enough in

amplitude that their nonlinear interactions can be neglected. In this regime, the evolution of the

disturbances is completely predictable from their initial state. Traditionally in laminar stability

theory, disturbance fields are studied through the linear Orr-Sommerfeld equation, which de-

scribes the evolution of individual infinitesimal disturbance modes. Even when a quantity, such

as the disturbance energy, is studied, it is the evolution of the instantaneous quantity rather

than an ensemble average that is investigated. In contrast, the turbulent regime is defined as the

region where the flow is subject to stochastic fluctuations, arising from nonlinear interactions,

which render the behavior of the disturbances unpredictable. In this case the disturbance field is

studied through (modeled) transport equations which describe the evolution of mean turbulent

correlations. The purpose of this study is to reconcile these two apparently disparate approaches

through a common mathematical analysis.

While the Orr-Sommerfeld equation accounts for viscous effects on disturbances, it neglects

the influence of any nonlinear interactions. The behavior of finite-amplitude disturbances can

be different and is more complex since nonlinear interactions occur. However, the intent here

is to analyze, within the framework of (ensemble) mean disturbance transport equations, the

behavior of the linear disturbance fields which characterize the beginning of a transition pro-

cess, and ultimately lead to a fully turbulent field. The approach taken here is based on the

observation that even in the laminar regime every flow is subject to an inevitable uncertainty

in initial conditions. Therefore, although each individual disturbance evolves deterministically,

a probability distribution must be introduced for the calculation of ensemble mean properties.

This approach is similar to rapid distortion theory (RDT) in that it is based on linearized dis-

turbance equations; however, the physical interpretation is different. RDT considers flows in

which turbulence is fully developed and uses linearized equations to study the behavior of the

disturbances under rapid distortion. RDT is usually applied to short time evolution and the

effect of viscosity is neglected. In the approach taken here, there is no limitation on the period



L- 2_ ..

of time evolution as long as the disturbances remain small, and tile effect of viscosity is essential.

Thus linear disturbances are considered in the early stages of transition where viscous effects

must be taken into account.

More recent extensions of RDT by Salhi, Cambon and Speziale (1997) have also exploited the

connection with linear stability theory. They studied quadratic flows in a rotating frame to gain

better insight into the dynamics so that a generalized stability criterion applicable to turbulent

flows could be developed. They also considered the effect on single-point closure modeling -

specifically the deficiencies in predicting elliptic flows. While the mathematical framework is

similar in this study, the region of interest here is the early-stage transition regime. Nevertheless,

this commonality further substantiates the basic assumption that a mathematical framework can

be developed which will provide a set of transport equations capable of describing the flow (in

a mean statistical sense) in the early-stage transition regime.

First the decay of laminar disturbances and turbulence in mean shear-free flows is studied.

The study of homogeneous turbulence has become an essential element in the calibration of

turbulence closure models. The simplest of the homogeneous flows is decaying, isotropic turbu-

lence, which traditionally has been used to determine the destruction coefficient in the modeled

dissipation rate equation used in two-equation and higher-order closure models.

In the second part the case of mean homogeneous shear is studied. Homogeneous shear flow is

commonly used as a calibration flow for turbulence models because both turbulent transport and

viscous terms can be removed from the transport equations for the turbulent correlations. An

extensive amount of experimental (Tavoularis and Corrsin, 1981, Tavoularis and Karnik,1989)

and numerical simulation data (Rogers and Moin, 1987) at low and moderate shear also exists

which further aids in its role as a turbulent calibration flow.

The purpose of this entire study is to use the solution of the disturbance evolution equations

for mean shear-free and mean homogeneous shear flows as a database in the calibration of the

evolution equations for the ensemble-averaged disturbance correlations. As a beginning, the

focus is on a simple disturbance kinetic energy and disturbance dissipation rate (two-equation)

description. In such a two-equation description of homogeneous shear, the terms in the kinetic

energy equation are exact and require no modeling; whereas, in the dissipation rate equation

both the production-of-dissipation and destruction-of-dissipation terms require modeling. The

two closure coefficients associated with these terms are determined from the analysis presented

here. Utilization of the disturbance evolution results as a reliable database is supported by the

DNS results of Lee, Kim, and Moin (1990) who studied homogeneous shear flow at a high-shear

rate. They showed that RDT results compared very well with the simulation results over the time

period examined. The results herein also show good agreement with the DNS results (Lee, et al,

1990), and are found to apply at much later times due to the energetic decay of the disturbance

field in the parameter range studied. Thus, this database will be used to provide insight into

the asymptotic behavior of important dynamic variables, as well as to provide the necessary

information for the closure model calibration. The resulting closed disturbance dissipation rate

equation can then be used in the formulation of a transition-sensitized turbulence model.



2 Boundary-Free Disturbance Fields

Consider first tile case of disturbances in a laminar, zero mean-shear flow with no boundaries.

Solid boundaries do indeed play a key role in the dynamics of any laminar disturbances and

tile transition process itself; however, in order to establish the mathematical framework, this

first example will be unbounded, as is tile decaying homogeneous turbulent flow. For this

initial-value problem, an arbitrary solution of the Orr-Sommerfeld equation (here, the linearized

Navier-Stokes equations) is given by

ui(x, t) = f daku°(k)e (ikx - _kh), (1)

where k = (kl,k2,k3) is the wavenumber vector in the coordinate directions x = (x,y,z),

respectively, and u is the kinematic viscosity. Because the initial conditions are uncertain, an

ensemble of such disturbances is considered for which a probability distribution can be ascribed

to the initial mode amplitudes, u/°(k). The mean of this distribution is zero and tile covariance

is (u°(k)u°(k')}. The corresponding two-point correlation function of the disturbance field is
then

where x' = x + r, and the homogeneity of (ui(x, t)ua(x', t)) implies that

0 0
@ (k)uj(k')) = a3(k + (a)

The two-point correlation function is then given in the form

R/j (r, t) = / d3kfij (k)eik.r-:-k2t, (4)

with the corresponding energy spectrum tensor

Eij (k, t) = fij (k) e-2"kh, (5)

which is assumed to be analytic at the origin (Hinze, 1975). This yields a wavenumber distri-

bution for fij which satisfies both isotropy and incompressibility,

fo(k) = (k28ij - kikj) f(k2), (6)

where .f(k 2) is a nonsingular, scalar function which can be related to the mean disturbance

kinetic energy through

1 f dak Eii(k,t) _= f d3 k f(k2)Ig2e-2uk't (7)K(t) = -_

In general, f(k 2) must go to zero sufficiently rapidly at infinity so that the integral in (7) is finite

at t = 0. A natural choice for f(k 2) is the normal distribution exp(-ak2). With this choice of

](k2), Eq. (7) then gives the mean disturbance kinetic energy

(K(t) = Ko l +--t , (8)

4



whereK0 is the initial value of K. Recall that for decaying homogeneous turbulence, the power

law behavior for tile final period of decay (Hinze, 1975; Batchelor and Proudman, 1956), is

K(t) v( t -5/2. Thus, the decaying linear disturbances have the same temporal character as

turbulence in the final period of decay.

The covariance of the initial mode amplitudes given in (3) can then be written explicitly as

<u°(k)u°(k')) :63(k +k')(6ij kikj'___]K07)(k), (9)

where

2(a5) U2
k2e -ak2 (i0)

T'(k) = _

is a probability distribution for the disturbance second-moments, normalized so that f d3kP(k) =

1, and a is related to the variance of the distribution. With this distribution P(k), other second-

moments can be calculated. For example, the ensemble mean energy dissipation rate

can be written as

e = -.fd3kd3ktei(k

(11)

(12)

2ut) -7/2= 2uKo/d3k k2e-2"k2t_(k) = 5UK°a 1 + a-

which, for this decaying flow, is simply given by the time derivative of the disturbance kinetic

energy in (8), that is, /_ = -e.

It is well known that for any power law decay of the mean disturbance kinetic energy, with

power -p, the mean disturbance dissipation rate equation

C 2

= -Ce2_. (13)

is satisfied exactly, and the coefficient CE'_ is given by

1 (14)Ce2 = 1 +-.
P

For this case of mean, laminar shear-free flow with no boundaries, the coefficient Ce2 is then 1.40.

In the turbulent case, values in the range of 1.80 - 2.00 have been deduced from experiments

(Batchelor and Townsend, 1948; Comte-Beiiot and Corrsin, 1966; Comte-Bellot and Corrsin,

1971), although the values more commonly used are delimited by 1.83-1.92.

In the turbulence case, there has been a considerable amount of research associated with the

proper choice of decay rate (Frisch, 1995; Lesieur, 1995). The values obtained have ranged from

a power law decay with exponent -6/5 (corresponding to a k 2 low wavenumber behavior of the



energyspectrumE(k) o_ k2Eii(k)) to a power law decay with exponent -10/7 (Kolmogorov

decay law corresponding to a k4 low wavenumber behavior). In the laminar disturbance case,

the temporal and the wavenumber dependence of the energy spectrum tensor are both given

explicitly from the disturbance mode solutions of the Orr-Sommerfeld equation together with

a probability distribution. The probability distribution enforces analyticity at k = 0 and goes

to zero sufficiently rapidly at infinity so that the integrals exist. A simple integration over

wavenumbers then yields the decay law of the disturbance kinetic energy with exponent -5/2,

in agreement with the final period of decay for the fully turbulent case. This agreement is not

surprising, because in the final period of decay, viscous effects are dominant, with the small scale

(high wavenumber) turbulence already decayed away.

3 Wall-Bounded Disturbance Fields

While it is encouraging to have identified a relationship between the decaying linear distur-

bances and decaying turbulence in the boundary-free flow, a wall-bounded flow is more relevant

for an analysis of linear disturbances which evolve through a transition stage and then into

full turbulence. Shear-free decaying turbulent flows with boundaries have been the focus of

experimental, (Uzkan and Reynolds, 1967; Thomas and Hancock, 1977) theoretical, (Hunt and

Graham, 1978) and numerical simulation (Perot and Moin, 1995) studies. The motivation for

these studies was to assess the inhibiting effect on the turbulent fluctuations due to the presence

of the wall in the absence of any mean shear arising from the relative motion between tim mean

flow and the wall. Here, the corresponding ease of disturbances in a laminar, zero mean-shear

flow with a boundary will be studied. For laminar disturbances, the wall has the effect of fixing

the phase of the Orr-Sommerfeld modes in the wall-normal direction.

The wall-normal direction is the y direction, and the wall boundary is located in tile (x, z)

plane at y = 0. In this flow, the modes are given by

gi(Y, k)e i(k× - ,ot), (15)

where now k = (kl, 0, k3) is the wavenumber vector in the coordinate directions (x, y, z), respec-

tively, and w is the complex frequency of the disturbances. An analysis (Grosch and Salwen,

i978) of the Orr-Sommerfeld equation shows that bounded solutions only exist when 03 is pure

imaginary (03 = i03i, i = _/-Z-f) and

wi = -(1 + A)uk 2 < -uk 2, (16)

where the parameter ,k(> 0) has been introduced. For three-dimensional disturbances, Squire's

transformation is used, and the Orr-Sommerfeld equation determines the velocity disturbances

g2 and klz_l + kaY3. The individual disturbance components, _1 and ua, can then be determined

in one of two ways. First, the pressure field can be determined from the linearized _ momentum

equation and then substituted into both the fil and _3 linearized momentum equations. Second,



tile kinematicequationfor the y component of vorticity i(k3_l - klU3) can be coupled with the

relation between u2 and (k1_l + k3_3) from the Orr-Sommerfeld equation to determine _L1and _t3

individually. Because the solution for (klul + k3_t3) and u2 obtained from the Orr-Sommerfeld

equation is an irrotational wave of arbitrary amplitude, and the solution of the vorticity equation

has an independent amplitude, it is necessary to introduce a new parameter, #, for the ratio of

these two amplitudes. The component disturbance modes are then given by

/tl(y,k) = i [_k_COS(V_ky)+ (v/-_- #___.3)sin(v_ky)- _v-kY], (17)

[ ' ]fi2(y,k) = -cos(v/_ky) + _sin(v_ky) + e -ky , (18)

_3(y,k) = i --cos(v_ky)+ v_ +#--_ sin(v_ky)--_e j,

where k = V/_L2 + k32because k2 = 0. At the wall where the no-slip condition is applied, '5i = 0,

and far from the wall in the freestream, where e -ky --+ 0, the modes _i are periodic functions

of y. It should be recognized that these expressions for the velocity components, because of the

no-slip wall boundary conditions, have fixed the phase of the disturbances in the y-direction. In

the absence of the wall boundary condition, the exponential terms would not appear and the

phase would remain arbitrary in this direction.

The component disturbance modes (17) - (19) form a complete set (Salwen and Grosch, 1981)

of non-normalizable eigenfunctions. A disturbance in the laminar regime is a linear combination

of these eigenfunctions

ui(x, t) = f dA d# dZk _()_, t_, kl, ka)_i(y, k)e [ikx - (t + :_)_k2t], (20)

which is normalizable in accordance with the finiteness of the disturbance kinetic energy. In

Eq. (20), the initial mode amplitude O()_,#,kl, k3) is again an element of an ensemble with

mean zero and covariance (q_*(_, #, kl, k3)_(£', #i, kr, k')). Since the modes ui are complex, the

two-point correlation function is the real part of

(u_(x,t)uj(xr, t)) =- /d£ d# dA 1 d#'d2k d2k ' (¢*()_,#,kl,ka)O(£',#',k',k'))

._(y,k)_j(y,,k,)ei(k,. x, _ k.x)e-t,[(1 + _)k2 + (1 + _')k'2]t (21)

where * quantities denote complex conjugates. Homogeneity in the xl and x3 directions then

implies that (q_*(_, #, kl, k3)O(X', #', k', k')) contains _(kt - kl)g(k3 - k')79(kl, k3) where, due to

invariance under rotations about the y-axis, P(kl, k3) is a function of k 2. It is still necessary to fix

the dependence of the covariance (q_(),, #, kl, k3)O* ()_', #r, k', k')) on (),, #, )_', #'). This is done by

imposing an appropriate isotropy condition in the freestream, where the decaying exponentials

can be set equal to zero in the component disturbance mode equations (17) - (19). In the

boundary-free case, the disturbance field is isotropic, and the ensemble mean square of the three

velocity components and of the three vorticity components are equal at each point throughout
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tile domain. In the bounded case, tile wall fixes the phases of the laminar disturbances in the

y direction even for large values of y, and it is not possible to impose pointwise isotropy as

a condition on an ensemble of such disturbances. However, for large values of y (freestream),

a weaker form of isotropy can be imposed on the disturbance field by averaging over the y

direction. Specifically, this requires that in the freestream the ensemble mean square of the

three velocity components and of the three vorticity components, integrated over y, be equal.

The simplifying assumption must also be made that (_(A, #, kt, ka)_*(A', #', k')> is diagonal in

A and# so that

<(I)(,t, #, kl, k3)(I)* (k ', #', k')) = di(A' - A)a(t*' - #)52(k - k')P(kl, ka) p(A, #)

where the function p(k,#) remains to be determined from the isotropy conditions.

Yt sufficiently large that e -ky _, 0 for y > Yl, one obtains from (17) - (19)

lim 1 <,<i,,,(x,,)i=}
L4_c L j yl

lim 1 fm+L
L-._oo 'L ..,yl

lim 1 fm +L
L--+oc L j yl

(22)

Taking

1 (l+A+#2)2

where use has been made of the identity

= f dkldkad.Xd#'P(kt,ka)p(A,#)

1 [ (23)"2 (1 + A)_-7 + k2j

= fdkldkadAdlaP(kl,ka)p(A,#)

"1(1+_)e-20+_>k2'2 (24)

= / dkldkad.Xd#'P(kt, k3)p(A,#)

1 [ , 2k' ] "k2` (25)'2 (l+,/)_ 7+ _-5j

where the integration over y has eliminated the cross terms cos(v_ky) sin(v_ky), while sin2 (v_ky)

and cos2(v_ky) have each yielded an average of 1/2. The terms containing klk3 have also van-

ished since "P(kl, k3) is even in kt and in ka. According to the assumed isotropy, the flmction

p(A, it) must have the property that the right hand sides of Equations (23)-(25) must be equal.

The condition that averaged over y, <1u112> = <lull 2} is satisfied automatically, while the con-

dition (lUll 2> = <lu212} yields the relation

1 (26)
=i+ A ,

1
/ d2kk21F(k2) = / d2kk_F(k2) = -_ f d2kk2F(k2 ) (27)

when F is any function of k 2 for which the integral exists. Calculating the vorticity wa (x, t) from

the modes iti(y, k)e (ik'x - (l+;gvk=t), with e -ky ---- O, one obtains expressions analogous to (23)-

(25), for the ensemble mean square vorticity components averaged over y. isotropy again requires
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that these three mean square vorticity components are equal. The condition that, averaged

over y, <[wll 2) = (]wa[ 2> is satisfied for any function p(A,#), and the demand that ([c0112> =

(Iw=I2>yields the relation

1[ Al /,2 (28)(I+A) 2 + A/*2 +)'+2+ =

Solving (26) and (28) for positive A and # then gives

1 3

A= _ and /*- v_'
(29)

which is enforced by taking

(3O)

The remaining function 7a(kl, ka) in the covariance (22) will be determined from a consideration

of the two-point correlation function and the energy spectrum tensor.

Since the disturbance field is partially homogeneous, (Lumley, 1970) that is, homogeneous in

the x and z directions and inhomogeneous in the y direction, the two-point correlation function

is

Ria (y, y', r, t) = A / d2kP(kl, ka)e ikr - 3vk2t fi_ (y, k)@ (y', k) (31)

where r = (x I - x,0, z' - z), A is a constant proportional to the initial disturbance kinetic

energy, and P(kl, k3) again plays the role of a probability distribution for the disturbance second-

moments. In order to obtain explicit expressions for the components of Rij(Y, yr, r, t), the values

for the parameters ), and # in (29) must be substituted into the component disturbance mode

equations (17)-(19). In the boundary-free case, an exponential time decay with coefficient

-2vk 2 is shown in (4); whereas, in this wall-bounded case, the coefficient -3vk 2 is found. This

is because of the value of A, which is zero in the boundary-free case and 1/2 in this wall-bounded

case.

An energy spectrum tensor can also be defined at each fixed y as a Fourier transform in x

and z:

Eij (y, kl, ]ca,t) = ATO(kl, k3)u_ (y, k)g_j (y, k)e -a"k2t. (32)

Once again, it is necessary that the energy spectrum be analytic at k = 0. From (17)-(19),

this analyticity requires that the distribution P(kl, ka) have a leading-order behavior of k 2. In

addition, the finiteness of the initial disturbance energy implies that the spectrum should go

to zero sufficiently rapidly for large k, specifically at t = 0. These requirements lead to the

normalized distribution

"P(kl, k3) -- ak2e-ak2, (33)
rr

where a is related to the variance of the probability distribution. Substituting the probabil-

ity distribution (33), and the mode disturbance equations, (17)-(19), into the expression for



tile energyspectrumtensor(32),and integrating, it is found that in tile freestream the mean

disturbance energy, averaged over one y wavelength, 2_r/_"Xk = 2Vr27r/k, is

1 f d2k k f dyEii(y, kl,k3,t)=

= K0 l+-_-t ,
(34)

This then identifies A,where K0 is the initial mean disturbance energy, averaged over y.

introduced in the two-point correlation equation (31), as A = 4aKo/9.

In the presence of a boundary, the mean disturbance energy decays according to a power law

with exponent -2, in contrast to the exponent -5/2 obtained for the boundary-free case. The

difference between the two cases arises from the fact that for bounded flow only two independent

wavenumbers are integrated in (34), while the integral in (7), for boundary-free flow, contains

three independent wavenumbers.

From Eq. (14) with p = 2, it is seen that for laminar, linear decaying disturbances in the

presence of a wall, the coefficient in the mean disturbance dissipation rate equation is C_2 = 1.5.

In the turbulent ease, the experiment of Thomas and Hancock, (1977) with a turbulent Reynolds

number Rer (= g2/vc) of 2000, yielded a decay law near the wall of approximately 1, which

in turn gave a value for Ce2 of 2. The recent direct numerical simulation of Perot and Moin,

(1995) with Fler = 137, also displayed a decay law near the wall of approximately 1.

It may appear surprising that the wall affects the decay rate of linear disturbances infinitely

far from the wall. The derivation of this result is based on the assumption that the initial dis-

turbance field is an ensemble consisting of linear superpositions of modes which each satisfy the

wall boundary condition _ti(0) = 0. This boundary condition fixes the phases of the disturbances

in the direction normal to the wall up to infinity, while the phases in the directions parallel to

the wall are random. The situation is different for decaying isotropie turbulence, where in the

initial stages of decay nonlinear interactions among the modes randomize the phases in the y-

direction outside of a viscous subiayer next to the wall. Even when the turbulence has decayed

to a stage where the nonlinear terms can be neglected, the phases will remain random far from

the wall. For this reason, turbulence in the final stage of decay is unaffected by a wall outside

of the viscous sublayer.

It is finally necessary to consider the condition for the validity of the linear approximation for

decaying disturbances. Since there is no mean flow U, one cannot impose the obvious condition

i_<< 1. In the absence of mean flow, the disturbance velocity obeys the Navier-Stokes equation

Ou_ Oui 019 02ui
- + u_ (35)

O---'t na _tj OXj OXi (_xj Ozj"

The nonlinear terms can be neglected when the inertial forces are much smaller than the viscous

forces, that is
OUi I 02_ti

uJ-_xj << _'0xj0x------j (36)

10



Tile scalefor the amt)litudeof the disturbancevelocityis setby tile initial disturbancekinetic
1

energy, ui "_ K_. The length scale L is determined from the probability distribution for distur-

bance second moments, the standard deviation fixing a wave vector scale L -t. For a probability
1

distribution of the form k% -ak2, L ,,_ a_, and the condition (36) gives a Reynolds number

criterion vQ-=_
-- << 1. (37)

/.,

Although the parameter a(= L 2) appearing in the probability distributions (i0) and (33)does

not affect the value of the destruction of dissipation coefficient Ce2, it does appear in the crucial

inequality (37) which determines the validity of the linear approximation. This inequality can

be expressed in terms of tile disturbance Reynolds number

Red- K_ (38)
uE0

where the initial disturbance dissipation rate E0 is proportional, in both the boundary-free and

wall-bouuded case, to _'Ko/a. Thus, .Red " aKo/t j2, and the condition for the validity of the

linear approximation for decaying disturbances can be expressed in the form Red << 1. This

inequality gives a quantitative definition of linear disturbances in the laminar regime.

4 Disturbance Fields in Homogenous Shear Flow

The theoretical development here parallels that of Townsend (1970), who described tile

structure of turbulence in a free shear flow as a product of the finite distortion of parcels of

turbulent fluid. This same RDT framework was used by Hunt and Carruthers (1990) (neglecting

viscosity) to gain further insight into the structure of turbulence in shear flows and to describe

some inhomogeneous flows. In this study, the relationship of RDT with linear stability theory

(Speziale, Abib and BlaisdeI1, 1996; Salhi, Cambon and Speziale, 1997) is expanded to include

an analysis of the transport equations for the ensemble-averaged disturbance kinetic energy and

the disturbance energy dissipation rate. As in the turbulence case, such model equations require

closure through the specification of closure constants. In the two-equation K - e formulation,

only the disturbance dissipation rate equation contains modeled terms which have unknown

closure constants. The homogeneous shear flow is used as a calibration flow for the production-

of-dissipation and destruction-of-dissipation terms.

In terms of dimensional coordinates (5:1,_a,:_3) in a fixed frame, the mean velocity is given

by 01 = $5:2, 02 = Ua = 0, where the mean shear S = constant, and the disturbance velocity

and pressure are denoted by _j and t3, respectively. For the problem of homogeneous shear, it

is convenient to work (Rogallo, 1984) in a moving frame (_:1,_2,:c3), in which the local mean

velocity is zero and the coordinates are given by

_1 = 2,-(S{)_

1i



i 5:3 = ._3, (39)

where i is time. The mean shear S and the viscosity u determine the time scale T = S -1 , length

scale L = vv/'_ _, velocity scale U = x/'_, and pressure scale P = U 2 = uS for the flow. This

leads to the introduction of dimensionless variables xj = 3cj/L (fixed frame), x} = :?)/L (moving

frame), t = i/T, uj = _j/U, and p = D/P.

In the moving frame, the disturbances obey the incompressibility condition

Out Ou2 Ou2 Ou3

Ox i t _ + Ox--_2+ _x_ = 0, (40)

and the linearized Navier-Stokes equations given by

02ul 02ul 02ul 02ul (41)
Oul Op _ (l+t 2) '2 2t +--+ Ox_o--i-+ + 0404 - ,3

02tt2 - 02u2 02u2 02u2 (42)
Ou2 Op Op _ (l + t2 ) '2 _ C_X3ot + 04 2t , + +

02u3 " 02u3 02u3 02u3 (43)
COU3 Op __ (1 + t2) ,-----_-- 2t0z-_10z _ + -- + '20---[-+ Oz'a Ozl Oz_ 053

The linear approximation is based on the assumption that the nonlinear terms uj_, in the

disturbance momentum equations, can be neglected with respect to both the viscous term uV2ui

and the mean shear term ujOUi/Oxj. This approximation remains valid as long as the amplitude

of the disturbance velocity remains small compared with the velocity scale vf_.

An arbitrary solution of this system in the moving frame can be written as a linear super-

position

Uj (X', t) ----

t) =

d3k fj(k, t)e ik'x'

d3k p(k, t)e ik'x',
(44)

where the mode amplitudes fj(k, t) and p(k, t) satisfy

ktfl+ k12f2 + k3f3 : 0

]1 + f2 + iklp : --]C2fl

]2 + ik_p = -K.2f2

]3+ ik3p= -_C2:3,

(45)

(46)

(47)

(48)

with k_ = k2 - tkl, _2 = k_ + k'22+ k], and the wave numbers (kl,k2,k3) are constant in time.

The solution for the velocity disturbance modes can be written in the form

fi(k, t) = Mij(k, t)fj(k, 0)e -q(k't) , (49)

12



"_ Z --:

where the exponent

=/]C 2 dt= _k_ t 3 - klk2 t 2 + (kiki) t (50)q(k, t)

arises from the viscous damping of all modes. The transfer matrix M has non-vanishing coin-

ponents

Mll = M33 = 1
k 2

M22- K:2

k k2(O- O0)
M12 =

klk 3

k3k2(O0 - O)

= k3"

+ k2HK2

+ klk3t(k_ - k2k_ + k._) (51)
k_ _C2

with

( )1 (k2) (k,_ (52)ku---- k_+k_ _ O0=tan -1 _-H @=tan-1' ' \kH]

The initial mode amplitudes fi(k, 0) are elements of an ensemble with mean zero and a co-

variance (fi(k, 0)fj(l, 0)}. Assuming that the initial disturbance field is homogeneous, isotropic,

and has finite energy K0, the initial covariance is given by the same expression as above for the

case of zero mean shear with no boundary

(f_(k,O)fj(1, O)) = 53(k + l) 5ij k2

where

2 laS"_'/2k2e_ak , (54)
V(k) = 5

is the probability distribution for disturbance second-moments, and the parameter a, related to

the variance of the distribution, will be given a physical interpretation in what follows. This

probability distribution is consistent with a k 4 low wave number behavior for the energy spectrum

E(k) (Batchelor and Proudman, 1956) and, in the case of linear disturbances in zero-mean-shear

flow, leads to a t-_ decay law for the mean disturbance kinetic energy.

The disturbance mode covariance is related to the energy spectrum tensor by

(fi(k, t)fj(1, t)) = Eo(k, t)63(k + 1), (55)

so it follows from Eq.(49) that

Eij(k, t) = Mit (k, t)Mjm(k, t)Eolm(k)e -2q(k'O, (56)

where, as a result of (53),

E0ij (k) = Eij (k, 0) = (Sij - --

k_k; \
/ K0P(k) (57)

k 2 /
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F

is the initial energy spectrum tensor.

The energy spectrum tensor is the fundamental quantity from which all disturbance second-

moments are derived by integration over wave number space. Of particular interest are the

disturbance stress tensor
P

Tij(t) = J d3k Eq(k, t) ,
(5s)

the disturbance kinetic energy K(t) = rii/2, and the disturbance dissipation rate

f d3k ]¢2 E_i(k, t). (59)g(t)

A physical interpretation can be given to the parameter a, which appears in tile probability

distribution (54), by performing the integral in (59) at time zero to obtain _0 -- 5Ko/a. In terms

of the dimensional disturbance kinetic energy [( = vSK, and the dimensional dissipation rate

g = vS2c the parameter a is given by

a : 5 (S/_-----9-°']: 5.0 (60)
/

It will be shown that this quantity, a ratio of the disturbance time scale to the mean flow time

scale, regulates the subsequent growth or decay of linear disturbances in homogeneous shear

flow. In the turbulence case, the variable 77-- S_[/g also plays a critical role. Jongen and Gatski

(1998) have shown that for turbulent homogeneous shear flow, 7/reaches an equilibrium value

which can be analytically connected to the variation of the ratio of kinetic energy production to

dissipation rate.

5 Modeled Disturbance  ansport Equations

The ensemble-mean kinetic energy and dissipation rate for linear disturbances satisfy evolu-

tion equations which can be derived from the linearized Navier-Stokes equations (in the fixed

frame). In this homogeneous flow, gradients of all ensemble-mean quantities vanish, and the

(dimensionless) kinetic energy and dissipation rate equations reduce to

/_ _ --T12 -- 8 _'PK -- E,

where PK(= --_'12) is the kinetic energy production,

P_ =-2 Oxl Ox2 + Oxi Oxi

is the production-of-dissipation, and

De = 2 OxjOxk OxjOxk = 2 dakK_ 4 Eii

(61)

(62)

(63)

(64)

14
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is the destruction-of-dissipation. From Eqs. (61) and (62), it is seen that only the disturbance

dissipation rate equation requires closure models. In the standard K- _ formulation, the

production-of-dissipation is modeled by

= -c 1  T12, (65)

which gives
K KP_

=
CT12 £ _OK '

for the production-of-dissipation coefficient. The destruction-of-dissipation is modeled by

(66)

_2

D_ = C¢2_, (67)

which yields

(68)

for the destruction-of-dissipation coefficient.

Recall that the components Eij of the energy spectrum tensor are completely defined by

Eqs. (49) through (57). With the solution of these equations, all the quantities of interest,

including Pe and De, can be obtained by carrying out the integration in Eqs. (58), (59), (63),

and (64). These three-dimensional integrations were initially performed numerically using cubic

and spherical grids. It was found that although the convergence was good at small times, at

times greater than about 10S -1, the results became strongly dependent on the grid resolution

used (even for grids with as many as 250 million points). The numerical evaluation of the

integrals in Eqs. (58), (59), (63), and (64) is therefore greatly simplified, and the accuracy

significantly enhanced, by performing the radial integration analytically.

It is convenient to introduce spherical coordinates (k, 0, ¢), in wave-vector space, such that

kl =ksin0cos¢, k2=kcos0, ka=ksin0sin¢,

and kH = k sin0. For the chosen probability distribution (54) the radial integrals in Eqs. (58),

(59), (63), and (64) are Gaussian and can easily be carried out analytically. The ensemble-

averaged disturbance stress components are then given by

ro(t) = Ko foTr fo 27r 5 (69)dO sin 0 de f- 2 eij,

where the angular functions f = f(O, ¢, t), and eij= eij(O, dp,t) are defined in the Appendix in

Eq. (A1) and Eqs. (A2) to (A6), respectively. This yields for the ensemble-averaged kinetic

energy

K0K(t) Jo dOsinO_ dCf-_eii, (70)

and for the ensemble-averaged disturbance dissipation rate

fo _r f0 _'r 7e(t) = _K° dOsinO dCf-Seiip (71)
8_rr/0
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wherep = K.2/k 2 so that

p = p(O, ¢,t) = 1- tsin20cos¢ + t 2sin 20cos 2¢ (72)

The resulting expressions for the production-of-dissipation 79_, and destruction-of-dissipation De

are

respectively, where

fo r f0 27r 7
Pc(t) - Ko dOsinO dCf-_[eiis + e12p], (73)

47rr/0

7Ko fo _ ao2_ de f-2 eiiP, (74)DE(t)- dOsinO f 2
407rr/_

1

s = s(0, ¢, t) = 2 sin 20 cos ¢ -
t sin 2 0 COS 2 ¢ (75)

Convergence tests show that these integrals had to be evaluated on grids with spacing of 1/16

of a degree. With the evaluation of the integrals in Eqs. (69) - (71), Eqs. (73) and (74), it is

now possible to analyze the ensemble-averaged transport equations for the disturbance kinetic

energy and dissipation rate. Of particular interest is the dissipation rate equation Eq. (62)

which requires closure. It will be shown in the next section that closure models for 79_ and D_,

can be determined through an analysis of the long-time behavior of tile disturbance correlations.

6 Results

From an examination of Eqs. (69) - (74), it is apparent that the only factor containing the

parameter 7/0 is f(O,¢, t), given in Eq. (A1). This factor, which appears in all the ensemble-

averaged correlations and which arises from viscous effects, governs the large-time behavior of

all correlations causing them to ultimately decay. At large times and generic angles sin 0 cos ¢

O(1), the t3-term in f dominates, leading to negligibly small values of the integrand. However,

for sin0eos¢ = kl/k small, f is proportional to t at large times. The t 2- and t3-terms in f will

also be O(t) when (0, ¢) lies in a band of solid angle of width O(t -I) about the kl = 0 plane.

At large times, this band of solid angle gives the dominant contribution to the integrals in Eqs.

(69) - (74).

Now, consider the disturbance kinetic energy (70). While f-5/2 decays at all times, the factor

eii (see Eq. (A5)) grows, indicating that the evolution of the disturbance energy is governed by

a relative balance of the two factors. Figure 1 shows the evolution of the disturbance kinetic

energy for different initial values of r/0. For a small value of 7/0 (= 0.6), the factor f-5/2 dominates

and the energy decays monotonically in time. A transition between this monotonic decay and

substantial growth of the disturbance energy occurs for values of rio between 1.2, where the

energy reaches a minimum and grows briefly, and 2.4, where the energy grows to a magnitude

just equal to its initial value before decreasing. For larger values of rl0 (> 3.0), the viscous decay

factor is further suppressed and, after a brief initial period of decay, the energy then grows for a

period of time before finally decaying. These larger values of r/0 can be compared to results from

the turbulent case. The initial value of r/0 = 6 is a moderate shear case which corresponds to
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tileequilibriumvalueforri in turbulenthomogeneousshearflow. The temporal evolution shown

in Fig. 1 for this value of ri0 contrasts with the exponential energetic growth (Tavoularis, 1985)

characteristic of the turbulent case. Here the disturbance kinetic energy grows to a little beyond

three times its initial value. Therefore, if the initial disturbance kinetic energy is considerably

less than the natural energy scale r,S, the linear approximation should remain valid for all times.

Calculations have also been carried out for ri0 = 12 and 18. The evolution of K with time for

these other rI0 values (not shown) is very similar to that for rI0 = 6. The only difference is that,

as expected, the maximum value of K reached before tile final decay is larger than for rI0 = 6;

for rI0 = 12, Krnaz = 6.95K0, and for rI0 = 18, Krnaz = 10.82/(0. The initial value of rI0 = 18

is a high-shear case which is very close to the value used in the DNS study of Lee et al. (1990)

(T/0-_ 17). Using the numerical simulation results, Lee et al. also compared with RDT and found

very good agreement over the time interval examined (0 < t < 12). (The quantitative basis of

comparison between the DNS and RDT were the Reynolds stress anisotropy components which

are discussed below and shown in Fig. 4. The high-shear limiting value r/0 _ oz corresponds to

the case traditionally considered in RDT calculations (Hunt and Carruthers, 1990; Rogers, 1991),

where viscosity is neglected. The absence of viscosity allows the energy to grow monotonically,

rendering at some finite time the linear approximation invalid.

Figure 2 shows qualitatively similar trends for the disturbance dissipation rate e(t) at the

corresponding values of rI0 = 0.6 and 6.0. For the small initial value rI0 = 0.6, the dissipation

rate also decays monotonically. At the moderate shear rate value 77o= 6, c(t) grows after a brief

initial period of decay, reaches a peak and then decays at a more rapid rate than the disturbance

kinetic energy. The more rapid decay of c(t) compared with K(t), at large times, comes about

because /-_ appears in the integral (71) for the dissipation rate, while the lower power f-_

appears in (70) for the kinetic energy. Similar behavior was found for the higher shear cases of

rI0 = 12 and 18.

Equation (61) describes the evolution of the disturbance kinetic energy with time. The

equation shows that for PK/e ratios less than one, the kinetic energy must be a decaying function

of time. Figure 3 shows that for the very weak shear initial condition of rI0 = 0.6, the Ph./e ratio

never reaches unity confirming the continuous energetic decay of the disturbances. However, for

the initial condition rI0 = 6, 12 and 18, the PK/e ratio exceeds unity for a period of time and

then decays below unity. This latter behavior is reflected in the disturbance energy evolution

shown in Fig. 1 for ri0 = 6 where the disturbance energy grows up to a time of approximately 25

(T'K/e > 1) and then decays (PK/e < 1) at larger times. This same qualitative behavior holds

for the higher shear rate cases of ri0 of 12 and 18 as well.

Since the main focus here is on disturbances which can eventually grow (and lead to tur-

bulence), the results for the initial value of ri0 = 0.6 are not of interest. In addition, while

this weak shear case yields decaying disturbances, the validity of neglecting the nonlinear terms

does come into question. As Cambon and Scott (1999) have pointed out, the contribution of

the nonlinear term, while small, may have a cumulative effect on the dynamics over a period

of time. In addition, the linearized, weak shear case may be inconsistent because the product

term containing the weak mean shear is retained while the nonlinear terms, possibly of the same
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magnitude,areomitted. Theseconsiderationsdictatethat subsequentresultswill focuson tile
moderate-andhigh-shearcases.

Figure4 showstheevolutionof theensemble-meanstressanisotropies

bij(t)- _-ij(t) 5i__Aj (76)
2K(t) 3 '

for the initial condition r/0 = 6.0. It is seen that initially isotropic linear disturbances are

distorted by mean shear, rapidly becoming anisotropic. The stress anisotropies asymptote to

the values bll = 0.631, b22 = -0.333, b33 = -0.298, and b12 = -0.008, which is consistent with

the turbulent DNS (and RDT) results (Lee, et aI, 1990) at high-shear rates. In the current

study, the b11, b22, and b33 anisotropy components are computed individually. The resulting

trace (bii = 0) is then used as a measure of the accuracy of the simulation which, for tile results

presented here, was satisfied to O(10-15).

Recall that initially, an isotropic distribution of the disturbance energy is assumed. Thus,

the structure of the disturbance field is significantly altered by the imposition of the mean

shear. This alteration is easily seen in the mapping of the anisotropy invariants II(= -bijbij/2)

and [II(= bikbkzbti/3) shown in Fig. 5. The figure shows that after t ._ 2, tile (realizable)

disturbance field migrates toward the two-component (2C) state. After t ._ 10 the disturbance

field is 2C and monotonically evolves towards a one-component (1C) state. Also shown in Fig.

5 is the invariant map trajectory of the DNS results (Lee, et al, 1990). As can be seen, at early

times (t _<2) both the DNS trajectory and that from the present calculations, with 7/0 = 6 and

18, are in phase, and at later times, even though the DNS evolution lags behind the the current

results, all of these evolve toward the same 1C state. At large times, the system has evolved

to what has been termed a "statistical eigensolution" of the moments (Hunt and Carruthers,

1990). That is, if the disturbances were to have these forms initially, the disturbance field would

change little under a distortion. While the results shown in Fig. 5 are for the rl0 = 6 and 18

cases, the same trend toward a 1C limit was found to hold for the ease of rl0 = 0.6. Thus, for

linear disturbances the existence of the statistical eigensolution is not limited to the high-shear

case. These disturbance field results are in sharp contrast to the equilibrium state reached for

the turbulent case where the fixed point invariant values are III_ ._ 0.0043 and IIoo .._ 0.064.

These values are far removed from the 2C and 1C states exhibited by the linear disturbance

field.

The results up to this point have ascribed a structure to the linear disturbance field in

homogeneous shear which differs from the turbulent homogeneous shear case. In addition, the

time scale ratio r1 does not evolve (see Fig. 6) to a constant value, as in the turbulent case, but

displays linear algebraic growth at large times. For a particular homogeneous flow (Jongen and

Gatski, 1998) , the dynamical behavior of the system can be described by the time scale ratio

rh and the production-to-dissipation rate ratio 7)K/e discussed previously.

The consequences of these results for developing a closure model for the disturbance dissi-

pation rate equation (62) can be seen from the evolution equation for r1 given by

/1 = -(C_I - 1) p---_K+ (C_2 - 1), (77)
C
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As seenfrom Fig. 6, r] displays a linear behavior at large times so that il (= 0.34, for 7]o= 6) is

constant. The large time value of/] is nonzero and depends weakly on r]0. This is in contrast to

the turbulent case where at large times//= 0. Since the production-to-dissipation rate ratio is

not constant (see Fig. 3), Eq. (77) suggests that the closure coefficients C_l and C_2 may also be

fimctions of time. Figure 7 shows the evolution of the disturbance dissipation rate coefficients.

Results for three initial values of r/0 are shown which suggest that a limiting range of values at

large times (and large r]0) can be reached. For C_t there is a modest change in the value at

t = 50 with changes in 7]o: for 77o= 6, Cel = 2.23, for 77o = 12, Cel =2.08, and for r/0 = 18,

Cvl = 2.01. For Ce2, the values range about +3% from a mean of 2.46. Although it was not

possible to determine analytically the limiting values for C_1 and Ce2, numerical simulations for

large values of 77oat large times showed that the limiting values were C_1 _ 2.0 and Ce2 .._ 2.5.

These values are in contrast to the usual values obtained for turbulent closure models where

Cel _ 1.45 and Ce2 lies in the range of 1.83 to 1.92.

In the turbulent case, the destruction-of-dissipation coefficient was deduced from an analysis

of the decay of isotropic turbulence (e.g. Comte-Bellot and Corrsin, 1971). In the analysis of the

decay of homogeneous, isotropic linear disturbances, above, a value for Ce2 of 1.4 was determined

in a boundary-free case. This is in sharp contrast to the value of 2.5 found in this homogeneous

shear flow. An explanation for this difference may lie in the structure of the disturbance field.

In the previous decay studies, the disturbance field was isotropie, and remained isotropic in the

absence of mean shear. However, as the results shown here indicate, the imposition of mean

shear quickly produces an anisotropie field (see Fig. 4) which eventually drives the flow close to

a 1C state (Fig. 5). Thus, a more relevant flow with which to form a comparison may be the

decay of anisotropic turbulence. Dakos and Gibson (t990) studied such a flow and deduced from

the decay of the turbulence the destruction-of-dissipation rate coefficient Ce2. Their anisotropic

decay data yielded a value for Ce2 of 2.18 which is relatively close to the value of 2.5 found here

for C_2. Of course, in spite of fundamental differences in the dynamics associated with each

study, it is interesting to note that the introduction of anisotropy in either disturbance field

(linear or turbulent) significantly increases the value of the coefficient C_2.

The value of the production-of-dissipation rate coefficient Cel used in turbulence modeling

is determined from a consistency criterion found from homogeneous shear flow at equilibrium.

As alluded to earlier, the time scale ratio r/is constant (/] = 0) in the turbulence case so that

Eq. (77) yields the well-known relation

1"

With the value of PK/e fixed from experiments (for example), and C_2 fixed from the decay of

isotropic turbulence, the value of Cet can be determined. Unfortunately, this is not the case

here and, as Fig. 7 shows, the value of Cel varies with time. As noted previously, it was not

possible to analytically determine the limiting values for Cel; however, simulations were run at

large values of r]0 and for long times to try to determine its asymptotic limit. These simulations

showed that Cel approached 2.0 at long times which is in contrast to the value of Cel _ 1.45 for
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tile turbulent case. Thus, for both the production-of and destruction-of-dissipation rate models

the closure coefficients are significantly larger than the corresponding turbulent values.

7 Summary and Conclusions

This study has introduced an approach to transition modeling in which deterministic solu-

tions of the linearized Navier-Stokes equation are combined with a probability distribution that

accounts for the uncertainty in initial conditions to obtain mean transport equations for distur-

bances in the laminar regime. This approach was applied to the study of decaying disturbances

in zero mean-shear flows. The analysis has shown that the linear disturbance field in laminar

flow decays at rates which differ from that of the turbulence field. In the boundary-free case, tim

disturbance kinetic energy decays at a much faster rate of 5/2 than the corresponding turbulent

kinetic energy decay rate of _ 1.25. This yields a destruction-of-dissipation rate coefficient Ca2

in the mean dissipation rate transport equation of 1.4 for the linear disturbances and _ 1.8 for

the turbulence. In the case with a wall boundary, the disturbance kinetic energy decayed at a

rate of 2, which is faster than the corresponding turbulent kinetic energy rate of 1.0. This yields

a destruction-of-dissipation rate coefficient Ca2 of 1.5 for the linear disturbances and _ 2 for tile

turbulence. These results are summarized in Table 1 which clearly shows that the wall has the

effect of reducing the decay rate of the disturbance energy in both the laminar and turbulent

regimes.

Closure models for the production-of-dissipation rate and destruction-of-dissipation rate in

a linearized disturbance transport equation for the dissipation rate have been developed. In

this study of mean homogeneous shear flow deterministic solutions of the linearized Navier-

Stokes equation are combined with a probability distribution that accounts for the uncertainty

in initial conditions, to obtain mean transport equations for disturbance correlations in the

laminar regime.

The temporal evolution of the disturbance kinetic energy and the disturbance dissipation

rate were shown to depend on the magnitude of the initial value of the time scale ratio rI. The

temporal evolution for both the kinetic energy and dissipation rate was monotonically decaying

for values of rl0 < 1.2. For larger values of r/0, both quantities initially decayed, then grew

with time, and then subsequently decayed at large times. This is in contrast to the turbulent,

homogeneous shear case where the quantities displayed exponential growth.

Even though the temporal behavior of the disturbance kinetic energy differed from the tur-

bulence case, the disturbance stress anisotropies did reach a steady-state which corresponded

to a "statistical eigensolution" of the problem. An analysis of the anisotropy invariant map

shows that this eigensolution corresponded to the 1C limit for the disturbance field, which is in

contrast to the structure shown by turbulence at equilibrium (bij = 0).

In the turbulent, homogeneous shear case, the time scale ratio rl is a fixed point of the

system; whereas, in the linear disturbance case it was found to have an O(t) algebraic growth.

As in the turbulent case, the evolution equation for/1 yields a relation between the 7_-/E ratio

and the closure coefficients in the disturbance dissipation rate equation. Unlike the turbulence
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c_e, however, the r/ and _f,-/e variables are time dependent which leads to time dependent

behavior for dissipation rate coefficients C+t and Ce2. Nevertheless, limiting values (for large 7/o

and at long times) were obtained which yielded values for C+1 and Ce2 that were larger than the

corresponding turbulent values.
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Appendix

The angular functions f(0, ¢, t), and eij = eij(O, 4, t) appdar in Eqs.

given by

and

(69) to

2 q(k, t)
f(O,C,t) = 1 +

5r10 k 2

2(12 13 )= 1+_ t--_t sin20cos¢+_t sin20cos2¢ ,

eu (/9, ¢, t) = cos /9+ sin 2/9 sin 2 ¢)

+ (2 cot/gsin 2 4) a + (csc 2/gsin 2 ¢ tan 2 4) a2
rt

- (sin 20 cos 3 ¢ + 2a sin 2 ¢ cos 4) P

+sin 2/9cos 4¢\p/ '

sin 2/9

e22(/9, ¢, t) -- p2 '

eaa(/9, ¢, t) = (cos20 +sin2Ocos2¢)

- (2 cot/gsin 2 4) a + (cse 2/gsin 2 4) a2

- sin 2 ¢ cos ¢ (sin 20 - 2a) r_t
P

+sin20cos2¢sin2¢(rt_ 2,
\P/

e.(O, 4, t) ( --,sin2 0_ (csc2/9 tan2 ¢) a21 + cos 2/9 + --'-_] +

--(sin2/gcosqs) rt+sin2/gcos2¢(rt) 2 ,
P

(sin 2/9cos ¢ + 2a sin ¢ tan 4)

e12(/9, ¢, t) = 2p

+ (sin2/9;os2¢)_ rtp,

where p = p(/9, 4, t) is given in Eq. (72), and

a(/9, 4, t) = tan -1 (cot/9) - tan -1 (cot/9 - t Cos 4)
t

r(/9, 4, t) = - cos 2/9 + _ sin 2/9cos 4.
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(74), and are

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(AS)



Case p C_2

Laminar-No Wall

Laminar-Wall

Turbulent-No Wall

Turbulent-Wall

2.5 1.4

2.0 1.5

,_1.10 _ 1.9

1.0 _ 2.0

Table 1. Decay exponent p and model coefficients Ce2 for laminar and turbulent cases.
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